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A control design for flexible joint manipulator in the presence of nonlinearity and mismatched

uncertainty is introduced. The control does not need the possible bound of uncertainty a priori.

Only the existence of the bound is assumed. A state transformation is introduced via implanted

control to tackle a mismatched system. The scheme utilizes the bounding function by combining

states and parameters, which is to be estimated. Then an appropriate parameters update laws are

designed to guarantee an asymptotic convergency by adopting Lyapunov approach. The control

version shows that states converge to zero for the transformed system, and guarantees the uni-

form stability and boundness. This is also true for the original system in case either the gravi-

tational force is absent or the system is coordinated such that the gravitational force converges

to zero as link angles approach zero. The control performance is verified through experiments

and shows an enhanced tracking performance for given references.
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1. Introduction

When robots are driven by actuators such as
harmonic drivers, the manipulators are usually
modeled by connections of rigid links with rigid
joints to simplify dynamic motion and subsequent
control design. However, the advantage by uti-
lizing joint flexibility in manipulator design is
often dedicated to increasing the system perform-
ance. For instance, the flexible joint can absorb a
certain amount of impact due to accidental colli-
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sion with environment, which makes the mani-
pulator compliant not to be damaged by external
impact, taking a potential advantage over the rigid
joints. On the other hand, even if a rigid joint is
installed for a transmission using a chain or belt
there is inherent flexibility between link and joint,
frequently giving rise to undesirable behavior by
a simple control design based on rigid joints. How-
ever, designing a control for flexible joint mani-
pulators with the inevitable nonlinearity and model
uncertainties is extremely difficult.

In this paper, a control scheme for flexible joint
manipulators to tackle a nonlinearity and uncer-
tainty is explored. Unfortunately, the uncertainty
in the flexible joint manipulators does not satisfy
a matching condition which requires that control
inputs be appeared in each mode. So far there
have been a lot of works related to the study of
the control for flexible joint manipulators includ-
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ing singular perturbation (Ficola et al., 1983),
and feedback linearization scheme (Khorasani,
1990) which rely on an exact model based ap-
proach. Robust adaptive control for uncertain sys-
tem model is also investigated (Ge, 1996 ; Yim,
2001). The exact model based approach requires
exact knowledge of the robot parameters, which
is not practically possible. As for robust control
based on Lyapunov approach the bound of un-
certainty a priori is needed. This may raise prac-
tical concern whether we can appropriately esti-
mate the bound of the uncertainty. Insufficient
knowledge of the uncertainty may cause unneces-
sary control cost or saturation in a controller. As
an alternative method, adaptive control can be
utilized. However, it does not usually guarantee
uniform boundedness which is stronger criteria
for system performance to overcome the possible
large transient response. Basically, the idea of the
adaptive control is to reduce the level of uncer-
tainty by estimating unknown parameters. On the
other hand, robust control is to design a control-
ler that can tolerate some level of uncertainty and
provide satisfactory performance. In many cases,
with only adaptive control there may be excessive
transient responses even if parameter adaptation
converges. Therefore it is worth while to investi-
gate a controller which combines adaptive and
robust scheme to enhance system performance. To
utilize robust control scheme we have to over-
come the mismatched uncertainty issue, which in-
cludes flexible joint manipulators. To tackle this
mismatched uncertainty, a backstepping based con-
trol has been introduced (Yim, 1996 ; Zhi and
Khorrami, 2000). In designing the controller the
uncertain parameters are required to be time-in-
variant and the uncertain parameters need to be
arranged to form parameterization. Other approaches
on the control of flexible joint manipulators are
sliding control (Filipescu et al., 2003 ; Huanf and
Chen, 2004) and fuzzy and neural network (Amjadi
et al., 2001 ; Abdollahi et al., 2003), which mostly
utilize those own advantages and show an asymp-
totic convergence under the limited selection for
the bound of uncertain parameter.

The major development of the proposed adap-
tive robust control in this paper is divided into

two parts. A state transformation via implanted
control is used for the development. First, by pro-
posing an adaptive version we overcome a prac-
tical concern that the possible bound of uncer-
tainty is to be given a priori. Due to insufficient
knowledge of the uncertainty, a difficulty in esti-
mating the bound of uncertain parameter may be
encountered. Moreover, even if the bound is drawn,
it may not be close to the exact bound of the
uncertainty, which is likely to make a designer
choose a conservative estimation on the bound.
As a consequence, unnecessary cost or saturation
in the controller can occur. Second, the combined
version of adaptive and robust control approach
satisfies properties that include uniform stability
and uniform boundedness. The adaptive robust
control satisfies a property that errors at the trans-
formed states approach zero. Furthermore, by this
scheme the original states approach zero in case
the gravitational force is absent or the system is coor-
dinated such that gravitational force approaches
zero, which is happened at a planar robot. In
the following, the procedures to design a control
scheme are demonstrated and the control is ap-
plied to a 2-link planar flexible joint manipula-
tor, presenting satisfactory experimental results.

2. Flexible Joint Manipulators

Consider an # serial link mechanical manipu-
lator. The links are assumed rigid. The joints are
however flexible. All joints are revolute or pris-
matic and are directly actuated by DC-electric
motors. Position of the rigid robot can be de-
scribed by 7 generalized coordinates represent-
ing the degrees of freedom of the joints. For the

flexible joint robot define vectors g1=[g® q® -

g2 g and go=[q® @ - g@ Y g7
where ¢ @... are link angles and g,

2 3 ...

q
are joint angles. Let

":m (1)
q2

be the 2n-vector of generalized coordinates for

q

the system. The dynamic equation of motion of
the flexible joint manipulator can be expressed
in terms of the partition of the generalized coor-
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dinates (Spong, 1989) :

D(q) 0| ¢1 C(q1, 41 ¢ G(qu)

RS A R
K(Ql_lh) _ 0

+[—K(q1—q2)}_[u]’

where D(g) is the link inertia matrix and J is a

(2)

constant diagonal matrix representing the inertia
of actuator C (g, ¢) ¢ represents the Coriolis and
centrifugal force, G(gq) represents the gravitation-
al force, and # denotes the input force from the
actuators. K is a constant diagonal matrix re-
presenting the torsional stiffness between links
and joints (hence K ! exists). We model the joint
flexibility by a linear torsional spring at each joint
and denote the diagonal matrix of joint stiffness
by K. We assume that the rotors are modelled as
uniform cylinders so that the gravitational poten-
tial energy of the system is independent of the ro-
tor position and is therefore a function only of
link position.

3. Adaptive Version of Robust
Control

We consider an adaptive version of robust con-
trol for a flexible joint manipulator system. This
approach is based on the state transformation via
implanted control and on combining state vectors
and parameters of bounds. It also guarantees uni-
form stability and uniform boundness, and satis-
fies a property that transformed states approach
zero. This control does not need the bound of the
uncertainty a priori. Let Xi=q1, Xo=¢1, X3=¢»
and Xy;=¢ also let x;=[X{ XF]7, x=[XF X{F]”
and x=[x{ x7]7. We construct the following two
subsystems for the flexible joint manipulator sys-
tem by using the state variables x1, X3 :

N:xi(t)=A0a(),0() +Bi(xi(8), 01(8)) x2(2),
Ne: s2(t) =fa(x (), 02(8)) + Ba(02(8)) u(t),

where

f1(x1,0‘1>_[ & )],

f21<X1, 01

Sfa= (X1, 01)
=—D""(q1,010) C(q1,q,01) 1
—D ! q1, 1) G(qu, 01)
—D g1, 01) K(01) qu,

f2<x>={_ L g ]
J ) K(02) g2+ ] " (02) K(02) a1

0 0}, @)

Bi(x1,01) :|:D_1(61’ q1> K(a) 0

. 0
B:(0») —[]_1(0_2)],

Here, ;i€ R and 0 R°* are uncertainty para-
meter vectors in Ny and N, Suppose we do not
need to know the possible bound of uncertainty
but the bound should be “compact”. Thus, we
propose the following Assumption.

Assumption 1. For each subsystem, the map-
pings 0i(+): R—> 2WCR, 061(+): R— 2HLCR%,
61(+): R— 21, CR° are Lebesgue measurable
with X}, D), 211 unknown but compact.

From now on, if no confusion arises we omit
argument for the uncertainty in D (o1, q1), C (o1,
a1,41), etc. Now, we pre-multiply K~' on both
sides of the first part of (2) and construct two
subsystems as follows :

Ni: D(q) i1+ C (g d) d+G(q) +a1=g, (5)
Ne: Jgo+K(qg:—q1) =u, (6)
where

ﬁ(dl) =K'D(q),
é(m&h) =K'C(quqv), (7
G(Ch) :K_IG((I1>.

The problem is to design control z which makes
the systems V1, N, have good performance. Notice
that the uncertainty does not meet the matching
condition (Chen and Leitmann, 1987) of the total
system. Thus, we divide the total system into two
subsystems as shown in (5) and (6) and intro-
duce a virtual (or implanted) control for the sub-
system NNV;. Therefore both subsytems have “inputs”.
Let us rewrite (5) and (6) as
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Ni: D(q) i+ Clqnd) int+ G(q) +au
:u1+CI2—u1,

No: Jio+ K(ga—q1) =u, 9)

(8)

where the “control” u; is implanted. This does
not affect the dynamics in N;. We now transform
the system (i, V2) to a system (N3, N2) by using
a state transformation. First, let z;=[Zf Z&]7,
2=ZL ZFf )T and z=[2f 2z ]T where

ZlZQb
Z=q,
(10)
Zs=q2— s,
Zi=q:— 1,

This implies that z;=x; and z2z=xs—[w1 21]".
The dynamics of the manipulator can be express-
ed in terms of z:

]\71 : D(ZI>ZIZ_C<ZI,ZI>ZI_C<ZI)
—Z1+Zs+ ui,

No: JZs=—Jin— KZs+ KZi— Kun+u. (12)
Let
é1(q1, ¢1, 01, 61)
:_%DA(Ql, 41, 01, 61) (¢1+S1q1) (13)

- C(qla dl, 61) q'l
-G (611, 0'1) _611+D(£]1, 0‘1) S141,

for given Si=diaj[ Siu]nxn, Si:>0. Then, we see
that there exists an uncertain function p;: R"X
R"— R, such that for all ;€ R", (1ER", 01E
2, 1€,

|| ¢1(Ql,dl, 01, 61) ||$01<41,41)- (14)

Assumption 2.(Corless and Leimann, 1984)

(1) There exist an unknown constant vector
BiE(0,00) and a known function II;: R"XR"X
(0,0)* — R, such that for all g;€R", 1= R",

o1(qr ¢ =II1(q1, 41, o) - (15)

(2) The function ITi(g1,¢1,*) : (0,00)*— R,
is C? (i.e., 2-times continuously differentiable)
and concave (i.e., —II:(q1, ¢1,*) is convex), and
non-decreasing with respect to each coordinate of
argument, (.

(3) The functions IT;(+) and
continuous.

Jll,
0B

(+) are both

Let

m= <Z1+S121> THI (Zl, /§1) )

ﬂlz[/lll tz "0 ﬂln] T, (16>
pr=[bu D1z D1n)”.
We construct controller for the subsystem
i (1) =—KnZi(t) —KnZ: () (17)
+p(z (), b(D),el(t)),
Where
Km:dl'agLKpanxn, kmi>0, (18)
Km:diag[szi]nxn, kvii >0,
P1: 1s chosen to be
— ” 'ulli” i (2, 31) if | s <&
D= Fai ) R (19>
—sin(Z44)11 (2 B) if lpmil <e,
1=1,2,--, m. Note that
<- /::Ii i (2, 31) if0< ;<&
bu= ! (2())

= —%Hl (21, El) if —£1§/l1i<0,

and || pu; | <II: (1, B1) . The parameter update law
for B is determined as

A 1l ﬂ A
Bi(t) =T Zi+ S| 9B, (21, B) (1)

Bi(ty) € (0,00) %,

where 7T; is a nonsingular diagonal matrix with
positive elements, and # corresponds to the num-
ber of links. The control parameter & (+) is set
by

él(l‘):_%&(l‘), e(fh) €(0,00), H>0, (22)

Here, & (¢) along with &1(%) needs to be deter-
mined not to be close to zero £ — 0 by adjusting
4 in real implementation, which prevents a possi-
ble chattering and undefined value on control
pli~

Moreover, we know that 3;(#) >0, for all ¢>
& if B1(%) >0 which satisfies Assumption 2(1).

The selection of K1, K1 can be conducted as
follows.
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1) After choosing si, select A; such that for
U >0,

A=y Amax(S) >0, (23)
Where

Alzmin{/imin (K1), Amin (S1Ep1) }a (24)

L [ss
Sl|:Sl I}’ (25)

2) Based on A; we select the values for Ky, Kp1.
Next, let

¢2 (21, 22, 01, O2, O"1)

:=—J (02) 1 (21, 2, 01, 02)
—K(02) Zs+ K (02) Z4
—K(0») wt] (02) 5223,

(26)

for given Se=diag [ Sz:|nxn, S2:>0. Then, we see
that there exists an uncertain function ¢z : R** X
R?"— R., such that for all z:€R*, z»E R*",
0OE2, E2, 1€,

| 2 (21, 22, 01, 02, 61) | < 0221, 22) . (27)

Assumption 3.(Corless and Leitmann, 1984)

(4) There exist an unknown constant & (0,00)7
and a known function IT,: R X R*X (0,00)" — R,
such that for all &€ R?", z& R*",

02 (Zl,Zz) :Hz(Zl, <2, ,82) (28)

(5) The function II2(zi, 2, *):(0,00)7 — R, is
C*, concave and non-decreasing with respect to
each coordinate of argument, /3.

(6) The functions IT,(+) and %lgz (+) are both

2

continuous. Next, for given &; >0 we design con-

trol for the subsystem N as follows :

u(t) :—Kp223(t> —K0223<t>

~ 29
1 (D). 20 Bal). exr), )
Where
D2 (21, 2, gz, &)
Ilz(Zl,Zz,,éz) AV Ps
—_— f >
AT F2>”H2(21,22,ﬁ2) if [ 1221, 22, Bo) [ > €2 (30)
—%Hz@, 22, ﬁz) if H #2(21, 22, [?2) H > &,

/12(21,22, Bz) = (Zs+Szzs) Hz(Zl, 22, Ez) . (31)

The update law of parameter /3’} and control para-
meter & are designed as follows.

Bz(l‘) . 7-‘2_1%(21,22, BZ> ” Zg(t) +S:7Z5(¢) ||, (32)

N U
&= A & (1) (33)

Ba(ts) E(0,0)7, &(ty) E(0,00), >0,

where 73 is a positive diagonal matrix. Again,
&(t) along with &:(%) needs to be determined
not to be close to zero t— 0 by adjusting &,
which is the same argument on &;(#). Here, we
know that B5(#) >0, for ¢ >4, if B2(%) >0, which
satisfies Assumption 3(4).

The selection of Kp, and Kpe is shown as the
following subsequent steps.

1) Let
@:min { Amin (sz) , Amin (Szsz) } (34>

2) After choosing S,, select A, such that for
w1 >0,

42_% wit>0. (35)

3) Based on A we select Kz, Kpo.

Remark 1 The control % (¢) relies on the accel-
eration and signal. This can be undesirable due
to possible noise or signal contamination. How-
ever, when the control action is implemented in
experiment, the acceleration can be adapted by
computing the simple difference equation in a di-
gital way as follows, which is excluding the com-
plex computation from the dynamic model. Then,
the other remain terms can be put into the uncer-
tainty terms, and eventually the adaptive robust
control #(#) counts for uncertainty by updating
the uncertain parameters at bounding function.
The experimental results shown later illustrate the
justification of this method. Other alternative for
avoiding a possible concern on acceleration feed-
back is to install a low pass filter after the com-
puted control % (#), which is dedicated to atten-
uating high frequency components caused by dif-
ferentiating velocities of joint and link angles.
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23:[}2_7/'{1
C@(t=A) —@(t)  w(t+AH) —u ()  (36)
o At At

To avoid the differentiations of signals, a low
pass filter design can be one of solutions. Viewing
the controller proposed in this article (29) there
exists many differentiation terms which can pro-
duce the chattering or noise amplification. In
stead of directly employing the numerical differ-
ence, we introduce a filter dynamics for the dif-
ferentiation terms as following manner.

1 dg . .
3 dq;f+612f2612

1 du 37)
F g;f"i'ulf:ul

where §2r and u:s represent the filtered deriva-
tive value of joint angle and virtual input, respec-
tively after passing through the filter. The input
signals to the filter are obtained from the numeri-
cal difference of the encoder signals, and virtual
input. A is the time constant. On the other hand,
keeping the derivative signal in control #(#) with-
out using the filter can be also suitably imple-
mented because the measured signal can be em-
bedded into the bounding function of ¢, :

u(t)= _szzs_Kv223+Pz
= _KPZZ3_Kv2(d_711) + 12
= —Kp223—Kv2<6]2—u1> n
+ Koz (Go— 1) un+ 12

(38)

where (§a—21)» and (§z2— 1) un Tepresent the
nominal value calculated from the direct differ-
ence equation and noise-involved part, respective-
ly. The (§2— #1) un part can be put into the modi-
fied function ¢,, yielding to a modified bounding
function p,(+). However, there might be a ques-
tion how we can estimate the bound of (§2— #1) un.
In a theoretical basis, this can be set by assigning
a reasonable bounding function (affine or poly-
nomial) .

Assumption 4. There exist unknown positive con-
stants ok, 0k such that

gkISB(m, @) <6, VO ER”, V€2 (39)

Define the parameter estimate vectors
b1(t) =[Bu(t) Bau(t) -+ Bu(t) a(t)]”
€(0,00) =1 9,

1/}\2(l‘):[,§12(l‘) [%2(2‘) Eﬂ(ﬂ e(®)]”
€ (0,00) ™ =: ¢,

v=[yf #4517,
p=1hU,

and the parameter vectors

h=1[pu Par -+ Br 0]7>0,

(41)
=1[p1z Baz -+ Biz 0]7>0.

The controlled system can be described by

D(2) 2,=—C(2,2)) Z,— G(Z) — Zi+ Zs+
JZs=—Jin—KZs— KZi— Kun+u,

’ T1-1||zl<t>+slzl<t>||aallf<zl<t>,ﬁl<z>> ’
—4%161(” (42)

Tz-lnz'sm+szzs<z>||%l[f<zl<t>,@<t>,ﬁz<t>> |

—4L12€2<l‘>

Here, arguments on the uncertainty in D, C', G,
and J are omitted for simplicity.

Theorem 1. Suppose Assumptions 1-3 are met,
then the system (42) under the control (29) has
the following properties.

Property 1. Existence of Solutions. For each
(20, Tro, o) ER X X R there exists a solution
(2,9): [to,tr) > R"X yof (42) with (2(t),§ (1)) =
(Zo, ¢0).

Property 2. Uniform Stability. For each 7>0
there exists 8 >0 such that if (z(+),#(+)) is any
solution of (42) with o1(z1) then | z(£)|, | #(¢) —
Y <7y for all tE[t,4).

Property 3. Uniform Boundedness of Solutions.
For each 71, 72>0 there exist dy (7, 72), dbo(m,
72) =0 such that if (z(+), #(+)) is any solution of
(42) with || z(t)[|< and || # () — ¢ | <7 then
|z(t)I<di(n,7) and | ¢ () — ¢ | < de(r1, 72) for
all tE€ [k, t).
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Property 4. Extension of Solutions: Every solu-
tion of (42) can be extended into a solution de-
fined on [#,o0].

Property 5. Convergence of z(+) to 0. If (2, ¥):
[t, 0] = R*" X ¥is a solution of (42) then
lim z(¢) =0 (43)

t—00

Proof . The detail proof is shown at the Appen-
dix.

Theorem 2. Suppose that Assumptions 1-4 are
met, then the system (5-6), (21-22), and (32-33)
under the control (29) satisfies Properties 1-4.

Proof. The system performance can be shown
similarly to (Kim and Oho, 2006) by investigat-
ing the original system (NVi, Nz).

Lemma 1. Ifeither the gravitational force G (q1)
is absent (i.e., G (q1) =0) or system (5-6) is coor-
dinated such that gravitational force approaches
zero as ¢ converges to zero (i.e., G(g1) — 0 as
@1 — 0), then the system (5-6), (21-22), and (32-
33) under the control (29) satisfies Properties 1-

5.

Proof. We have shown that Properties 1-4 are
satisfied in Theorem 2. We need to investigate
Property 5. We know that z(#) — 0 as ¢ — oo,
this means that x;—=2z;— 0, and 2z — 0. For the
state X3, we have

X3223+ Ui,

.. (44)
X1=Zs+ Uuz.

Here, we decompose 01(21) as two bounded func-
tions, which one is related to gravitational force
and the other is related to other forces :

o1(z1) =I11(z1, ,@1) =(#d (21) +-"(21)) p1 (45)

where #(+) and «(+) are vector functions which
belong to a class K function and #f (z1) B is
corresponding to gravitational force || G (qu)| If
z1— 0, then # — 0 by the condition imposed in
Lemma 1, and the second term in (45) converges
to zero. This yields IT; (z1, A1) — 0 Hence o, — 0,
as ¢ — oo Therefore u; approaches zero as ¢ — o
and thus X5 — 0. For the state X4, by computing
1 we have the following result.

7/‘{1:_<Kp1_%> Zl—<Ky1— o >Zl

07 7
o (;p LT )
oo 5, Obr .
+ 331 ﬁ)1+ oe, &1.

Since Zi,Z1— 0 as t — 00, we see that the first
and the third term converge to zero. For the
second term in (11)

2==D(2)MC(2.2) 2~ G(2) = Zn+ Zatw) . (47)
We see that Z; — 0 since z— 0. The last term
in (46) converges to zero since &;(+) is bounded
and & (+) is uniformly continuous, & — 0 by
Barbalat’s Lemma. Therefore X; — 0. This proves
that ltargx(t) — 0 as t — oo,

4. Experimental Verification

Consider a 2-link flexible joint manipulator
(Fig. 1). We use the two adaptive versions of
robust control. Let link angle vectors ¢;=[¢g?®
q®]T and joint angle vectors g=[¢q® ¢®]%.
Then we have D(q1), C(q1.¢1), G(qv), J, K as

follows and all parameters are unknown.

dll dlZ
D = ,
(a1 [dm dzj
Cland )_[—mﬂllzsin ¢ —mphlysin q““(c‘]““ﬁ-q(z’)}
o mohilysin ¢“g® 0 ’
48
( {(mllcﬁmdl)gsin q(z“rleczsin(q‘2’+q‘4’)} (48)
Q)= )
' leczsin(q‘z’ﬂl(“)
(o] . [K o
=8 b )
where
du :=le(112+ lczz +2hbe cos 6](4))
+melh + L+ D,
(49)

dn :=me ( lczz + bk cos 61(4)) + L,
dun :=dh, d» I:lelgz + L.

Select each values for the two cases as follows :

10

51252:{0 I

], gx=1, Ti=Tr=hx, (50)

We choose e;=&,=10 for the case 1. Based onthe
above values we can choose Ai=1, and A,=2, to



64 Dong Hwan Kim and Chan Sun Park

satisfy (24) and (35). So we select Kpy=1, Kp1=
2, Kp2=2 and K,»=3. Let ¢, ¢ be the desired

positions of links and g%, ¢&

be the desired joint
angles. We want links to be tracked to the desired
trajectory. Let g®=¢®—¢® and ¥ =¢"“—¢¥.

Also the joint angles errors are written as §=

q(”—q&” and q(3):q(3)_q(3)_
Next, set
I (21, B1) = Pu (GP°+G%) + B (G2 4G, (51)

=Bu(® +3") + 523" +7")
Bl 5 + Bal@ )

T2 (21,22, Be) (52)

Now we have following controllers :

ul\z_Kpldl_Kvlé—i—l)l, (53)
n=1[pu p2]” (54)
” u " (C] B) if ” u11||>€1’
pu= H (55)
—sm( m‘“) if | e[| <e:
Uiz ~ 5 .
_”u i I1:(q, By, if || o012 > &1,
D12= 1 R (56)
—sin( 24211 (3. 8), if lusl<e
&1 1

[un ulz]Tz (5‘1'5151) ( /3)) (57)
—Kps(Go— ) — K2 (Ga— 1) +12,  (58)
where
_ It ;
" P " HZ, if ” 2 " > E2,

D= (59)
—00,, i | wl>e
E2

1+ S2(Ga— 1) ) 12 (21, 22, ﬁz) . (60)

The update laws of parameters for the control

uz=(?1z—

scheme are shown :

51: [,é\q EZI] T

[I1Z+8Z0@ +¢®) )
||ZI+SIZI|| q® +q*") |

:[,812 ,822 ,832 ,842]
| Zs+ S22 (" +3") |

|1 Za+ SuZel (3944 )
||Za+5223||( @4 g®?)
1 Zs+S$:Z50 (" +G9) |

&(+), &(+) are chosen as:

é1= - (63)

2
15
2

&= —1s5¢ (64)

The designed 2-link manipulator consists of links,
tortional springs with different stiffness installed
between motors and links, electric motors, and
motion controller. The experimental setup for 2-
link manipulator with flexibility is illustrated in
Fig. 2. Basically, the flexibility between motor
shaft and link exists, which implies that the link
and motor angles are independently measured to
employ the proposed the adaptive robust control
algorithm. We placed four encoders to measure
the link angles and joint angles for the two degree
of freedom manipulator. The joint angles of two
motors are directly measured by encoders install-
ed on the axes of the motor shafts. On the other

Fig. 1 Experimental setup for a flexible joint mani-
pulator

Fig. 2 Model of 2-link flexible joint manipulator
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hand, the link angles are measure by installing
pulleys between the rotating shafts and links,
which are rotated by timing belts. The devices are
well illustrated in Fig. 1. For the experimental
setup, all parameters are roughly given, which are
not necessarily known : m;=2.8 kg, m,=0.3 kg,
5h=0.25m, [;=0.1 m, and K1=1.48 kgf*m, =
1.15 kgf*m, [;=0.112 kgm? L=0.003 kgm?, J,=
J>=0.001 kgm?, g=9.8 m/s? and the control para-
meters ate assigned in the followings : Kpn=Kpo1=
20, Kp12=Kp22=10, Kp11=Kp21=10, Kp1=Kpzo=
5, su=s12=1, sa1=s2=1, e1=5, =5, /=5 is
chosen according to the selection of /5 based on
above parameters.

Figures 3 and 4 show the step and sinusoidal
responses, respectively by simply applying PID
control on the assumption that the joints are
rigid. Viewing the results, as we expect, the con-
trol performance is almost perfect. This implies
that when the joint flexibility is rigid enough, the
manipulator is easily controlled. On the other
hand, in case of flexibility in joints, which is
shown in Figs. 5~8 the experimental results for
the control performance only by PID control are
not satisfactory with regards to large steady error
and phase lag. The experimental comparisons be-
tween PID and adaptive robust control are illus-
trated from Figs. 5~8 for step and sinusoidal in-
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1500 +
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B 1000 =
g X
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Fig. 3 Step response by PID control for a rigid joint
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Fig. 4 Sinusoidal response with PID control for a rigid joint



66 Dong Hwan Kim and Chan Sun Park

puts. The PID gains for each link are assigned as
P gain=100, D gain=10, I gain=20 for the link
1, and P gain=50, D gain=10, I gain=20 for the
link 2. The gains are determined by several trials
as long as the system performance is as desirable
as possible. On the other hand, under different
sets of the PID gains, the system shows undesir-
able behaviors such as high overshoot, instability,
etc. which is mainly from the joint flexibility. The
vertical axis for each figure shows number of the
encoder pulses for the joint angle, and the encoder
has 10,000 pulses for one rotation. For hard stiff-
ness between the motor and link, which is recog-
nized as an almost rigid manipulator, the control
performance is desirable under PID or robust

adaptive control viewing the experimental results.
In general, for a rigid manipulator, it is known
that the tracking performance is pretty acceptable
by PID Control itself. However, when the stiff-
ness between motor and link is small, whether
the reference input is given by step or sinusoidal
form, the system performance is not satisfactory
due to a large steady state error and oscillation,
which implies the appropriate motor torque is not
enough delivered to the link due to a large de-
coupling between those (Figs. 5 and 7) .It implies
that the PID control does not compensate the
uncertainty portions and structural decoupling.
To justify the control performance by the adap-
tive robust control, a robust control scheme is
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-
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, 1500 r
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_.5‘ 1000 _l,.{:i
I.TJ £ o Koipa
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o
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Fig. 5 Step response with PID control for flexible joint manipulator
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Fig. 6 Step response under adaptive robust control for flexible joint
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employed in Fig. 9. The steady state error is big-
ger than the error by adaptive robust control even
if the steady state error could be decreased by
selection of the control gains, which is similar to
€1, and & in our controller set. However, severely
small selection of the gains gives rise to a chat-
tering in a control (Kim and Oho, 2006). In
general, for a rigid manipulator, it is known that
the tracking performance is somehow acceptable
by PID control. However, when the stiffness be-
tween motor and link is small and soft, whether
the reference input is given by a step or a sinus-
oidal form, the system performance is not satis-
factory due to a large steady state error and fluc-
tuation, which implies the motor motion does not
much deliver to the link due to a large coupling
between those. It implies that the PID control
does not completely compensate the uncertainty
portions and structural coupling.

On the other hand, with the use of the adaptive
robust control, an improved system performance
with respect to smaller settling time and steady
state error is achieved in comparing with the PID
control or robust control. Even under soft flexi-
bility which is enough to cause a decoupling be-
tween the motor and the link, the control per-
formance is very affirmative by adapting the adap-
tive robust control.

5. Conclusions

An adaptive robust control has been construct-
ed for flexible joint manipulators which are non-
linear, time-varying and mismatched. State trans-
formation via implanted control is introduced.
No statistical property of the uncertainty is as-
sumed and utilized. Only the existence of the
bound of uncertainty is assured, although the
bound is not given a priori. The scheme utilizes
the bounding function by combining states and
parameters, which is to be estimated. The con-
trolled system has a nice property such that states
for the transformed system converge to zero. Fur-
thermore, the system guarantees uniform bound-
ness, which is a stricter condition than a general
adaptive control scheme. This is also true for the
original system in case when either the gravi-

tational force is absent or the system is coordi-
nated such that the gravitational force converges
to zero as link angles approach zero. However,
since ¢; and &; will decay, we need to be careful
when selecting /i and % to overcome chattering
in practical implementations. Also, in view of ex-
perimental work, sampling time of the control
system needs to be carefully selected not to cause
a chattering or unstability. The fact that the adap-
tive robust control is free of selecting the bound-
ing function gains an advantage over robust con-
trol in real applications.

Appendix

Proof of Theorem 1. Let ,671:231—/31 and
B2:=pB—p. Choose functions Vir(z, B1) and
Var (22, B2) as follows :

V1T(Zl, §1> = V1<21) + Vﬂl(/g)l) +hey, (65)
Vzr(Zz, ,/}2) = Vz(»Zz) + Vﬂz(/;)z) + bheo, (66>
Where

14 (21) :%<Zz+ SIZI> TD (ZZ+ 5121)

32 (Ko + Sion) 20
Vm(gl) :%(/3)\1_,81) TTl([?l—/a’l),

Vz(Zz) :%<Z4+SZZ3> Tf <Z4+SZZ3)

32 (Koot o) Zs,

Vie(Bo) = (Bo—B) " Ts (Bo— o).

To show that Vir and Vir are legitimate Lyapunov
function candidates, we prove that both Vir and
Var are positive definite and decrescent. Based on
Assumption 3,

Vi(z) Z%Qk || Zo+S17, ||2‘|'%Z1T (K1 +S:1Kn) Z1

:%kaﬁl (Z3; +2S81:Z5:21:+ St ZE)
i (68)

+ ! > (kp1i‘|‘31ikv1i> lez'

24

n 7 i
:%lgl [Zu ZZz'] Q”[Z;-]’
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V91<B1> > Amin 7‘1 ” ﬂlnz (69)
where
Qli—[dkSh +kplz+512kvlz 0kSlz:| (7())
O‘kSu O

Here, Zi; and Z;; are the i-th components of Z;
and Z,, respectively. Since £i;>0, V7 and T1>0,
Vi and Vj, are positive definite.

Next, in conjunction with Assumption 4 it can
be seen that

V<Z1 < 0k||Zz‘|‘Slz1”2‘|' Zl (Kp1‘|‘Sle1>

; 6:3} (2 + 280+ S Z3)
1 & (71)
+ Z} (lpr:+ Stikors) 7t
_ 1 n le
*7;1 [ZIZZZZ] Qll|:ZZi:|
W1 <gl) g/.{max( 7—‘1) ” gl ”27 <72)
where
Qli [O‘kSu + kp1:+ Siikor: O‘kSu] (73>
xSt Ok

Consider the Lyapunov function candidate Vir:

Viz 53 Amn (@00 (ZE:+ 22

(74)
=iz,
1 ~
=— Ami - 2
Vpl 2/1 n<T1)”181 B1|| (75>
=781 Bi—Bul?,
where
7= min {minAwn (@00, i=1,2,-+-, 2},
(76)

:%/Imin ( Y‘l) >

and 7V, ¥ are unknown constants. Furthermore,
we have

i<y 3 A (@10) (Z+22)

=7l P,

(77)

I/ﬁl é%/.{max( 7‘1) " Bl_ﬁl "2
=7 31*31 I

(78)

where

7él’=%m§x{m£xAmax(§u), =12, m},

| (79)
:E/Lnax< 7‘1> s
and 7Y, 7§V are unknown constants.
Similar to 14, V2 can be shown to satisfy
12 ;
72_2; Amin (Q2:) (Z55 +23:) < Va(20)
o (30)
S?E /1max (QZi) <Z321 +Z§z) s
1 A A
5 A (T | Be— BelP< Vi B2)
| (81)
Sjﬁma)& 7‘2) ” BZ_BZ ”2,
Thus
70 27 < V2 (= ) <79\ 2|7, (82)

AN Be=BolP< Vi, (Bo) < vl Bo— BolP, (83)

where

VfZ)Z%m,in{Htlfiln/imiﬂﬁﬂ), i=1,2,--,m},

1 .
7§2>:7mgx{mmaxﬂmax<!22i), =12, n},

(84)
752):%/1min( D) 5
éz)_%/’{maxx B) P
also,
0, — |:QS§:‘ + p2it Saikvz: QSm]
s (982i Q ’
O. .. |:6SZ: +k1721+821k021 HSZI:| (8 )
2 052 g .
gi :Amax (]) 5
Q I:/lmin (]) 5
and 7{?, 72 are unknown constants. The deri-
vative of Vir is given by

Vir=V+Va+hé. (86)
Concerning V., it can be seen that
Vi=(Z1+8$2)"D(Zi+S$i20) "
+ 2+ ST D2+ SZ)  (87)
+Z1 (Kpi+ SiKo1) Z1.
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From (42), we obtain
V1: <Z1+S1Z1) T(* CZ1*GA*Z1+Z?,+ [Z51
+DS\Zi+5 D21+ D7)

+ZI (K + S1Kon) 21
=(Z\+S12) T(%D’.\(ZH‘&ZO —CZ, (88)
—G—7Z1+DS\Z)
+ <Z1+ SIZI> Tu1+ (ZI+SIZI> TZS
+ZI (Kp1+ S1Kon) 2.

Using the “control” z; in (17), (13), and (15) it

can be shown that

Vi< (Z1+S12) T(*Kp1Z1*Kle1+p1)
+|| Zl+S1Zl ” Hl (ZI,BI) + <Z1+S1Z1> T23
+Z{ (Ko + S1Kn) Z1 (89)

<=ZP+H Z:+S 2| i (21, By
+H(Z1+S12) "o+ Z1+ S 2| || Z .

For |t > €1, the second and third term in (89)
becomes

|| Z1+S1Z1 || Hl (21, ,81) + (ZI+SIZI> Tz‘h
g” Zli‘|‘SliZu||Hi(Zl,,81>

le+SItle ) <9O)
4” 7t Sz ” H1<Z1,Bl)>

21,,81>>

+2 (2520
_2 ” le—l—Sllle ”

When || za:]|< &1, then
” Z1+S1Z1 || H1<Z1, ,81) + (ZI+SIZI) Tﬁl
ﬁé || Z1i‘|‘SliZli||Hi(Z1, Bl) <9]>

M= T

+ 3 (Ziit S0 — H%(zl,z?l)e%).

1

Concerning Vg, it follows from (21)

Vﬁlz(él—ﬂ1)Tﬂ§1
= (ﬁl_ﬂ1) T 88%11

Since —II;(z1,+) is convex for all ZE R?", it is
true that

(a8 (B0 =T,

therefore, we get

Vﬁl (Hl(Zl,Bl) I, 21,,81 ||Z1+Szzl||
Finally, by (90) and (91) V; is upper-bounded
by :

(92)

(2'1, [%) “ ZI+SIZI "

(21, B\l) —IL (21, Bl) s (93>

Vlrﬁ _41 || 21 ”2"'{:21 || Zli—l_slizli” I (21, B1>
7;‘21 (Z1i+S1i21i> 2H%<Zl, ,8\1)%1
s ASVA VA

e R e N ARSOVA | A

+hé&

(95)

1 = 1 _
—Aill 2 ||2‘|‘7C01Amax (So)llz ||2+7w1 U 2P

1 _
< (25 0rdeas(S) )l 2P+ i 2l

Next, the derivative of Var is given by
Var="Va+ Vﬁ2+ hés. (96)
Concerning Vs, it follows from (12) and (26)

Vo= (ZS+SZZ3> T]<Zs‘|‘ Szzs> ‘|‘ZsT<Kp2‘|‘ Sszz) Z3
= (Za‘|‘SzZs) T(*]m*KZﬁKZﬁKuHr]SzZﬁu)
2 (Kot SiKn) Zs
= (Za‘l‘SzZa) T(@z‘l‘ u) ‘I'ZaT(sz‘l' Ssz) Za

It follows from (27-29)

Vo< Zs+ SoZs|| | gall+ (Zs+SsZs) Tu
+ ZF (Kpo+ SoKo2) Zs
< || Z3+ S2Zs ” I12(21, 22, Bz)
+ (Zs+S2Zs) " (— Ky Zs—
+Z§ (Kpot+ S2Koo) Zs
< _ﬂz || <2 ||2+ || Zs+ SzZ3 ” Hz (21,22, ﬂz)
+(Zs+S:2Z5) "o

(97)

KoZstp)  (98)

Concerning Vg, it follows from (32)
Vﬂz:EZT Tz,gz

r . (99)

:(,81_,81) Tz<Tz 33 (21,22,,32 )‘|Zs‘|‘5223”-

Owing to the condition that —II»(z1,2, ) is
convex for all z, <€ R?,
V,eZS(Hz(Zl,ZZ, ﬁz) Hz(Zl,Zz, ,82 ||Z3‘|‘SZZ3|| 100
By adding (100), we obtain

VZT <Z3‘|' SzZs) THz <21, 22, Bz)
+ Zs (sz + SzKyz) Za‘l‘ 1262.

7 T
<Z3‘|‘SzZs> Uu (101>

From the control z in (29), it can be seen that

VzT: (Zs‘|' Szza) L. (21, 2, Bz)
+(Zs+S:2) T ( —szZs—Kngs+pg)
+ 24 (Koot S2Kn) Zs+ b
*Az || R ||2+|| Zs+ S2Zs || I, (21, 22, Bz)
+(Zs+S22s) "ot b

(102)
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For || (21, 2, Bz) | > &2, the second and third term
n (102) becomes

| Zs+ S 25| T12 (21, 22, Be) +
== || Z3+ SzZ3 || II. (21, 22, ,82)

- " Zs+ S: 73 || II. (Zl, 22, Bz)
=0.

(Z3+S2Z3) Tpe
(103)

When || 1 (21, 22, B) | < &, then

|| Z3+ S2 23 ” II. (21, 22, Bz) + (Zs+ 5223) TZJZ
:” Z3+S5:75 ”Hz(Zl, 22, ,82) . (104>
— | Zs+ S22 |PT13 (21, 2, Ez) ?ZS%

Therefore, we have

Vaor< —/12”22”2-1-24—1252
_ 2 62
=kl P+ b —52)

¥

(105)

=/ | 22

This shows that Va7 is bounded from above. By
above results (95) and (105), we get

VT: V1T+ Vzr

</11 Q)l/1max 1) ) ” 21 "2 <]06>
(2ot 12l
If we choose A; and Az such that
&1_%0)1/1max(§1> >0,
(107)
i1*ia)1_l >0,

2
then we have
. . 1 =
Vr<—min {jl—jwl/lmax(s) A —7601 }”22”2

=—n(lzl) a.e.on(to tr),

(108)

where
(12D =min{ 4~ o). =o' . (109)

This concludes boundness of the states and the
states convergence to zero is now investigated.
Consider any 7 >0 let

n(lzl) =min{ 7", r* }| 27,
re(lz]) =max {7, 72} 2|7,

72(1 B—B1) =min{ %V, ¥} B— B,
7(| 3—BI) =max { 9§, @} B—BI?

where
B=I[BT p11", p=18 FF1"
and

s 77(”) }
We are choose 01, 62>0 such that

7=min{ 7:(7)

lz(t)<6:= r(lz(6)]) < l
(110)

19(8) —yl<8:= 5§ (1) =y ) <T-

and take §=min{ &1, 8:}. Now, we define

r)=s}Vs€[0,00],
1=1,2,

ri={rER: i (111)

then, we get
1 2s
71 (S) _< mm{ 7(1) {2)} > )
1) 2s >?
72 (s) = (7(1) 2y )

min{ 7

N

-
—~
—
—
N
~

For any 7, 72 let
d1(7’1, 7’2) JrZs(Tz)], (113>
dz(7’1, 7’2) JFZs(Tz) :|,

With 7 and di(71,72), d2(71,72) given above, Pro-
perties 2-4 follow directly as we apply the results

2771_1[Z2<7’1>
2772_1[Z2<7’1>

(Corless and Leitmann, 1984). For the Property
5, we consider from the results of V; and V,

Vit Vo< 20+ S0 (2, B) + (204120 "= Al a1
+ydan(S) w45 w2l 2l

Jr” ZaJr 5223”1_[2(21,22, ,82) + (Zs+SzZS> Tl)z
é" +S7Z ” (2, £1> + (Zl‘l' NYAR
) Zs+ S22 12 (21, 22, B)+ (Zst+S:25) s

For the first and second term of (114) it can be
seen that

| Z:+S:Z:| 1T, (21,6 + (Z.1‘|‘5121/>\ Tpy
:||Zl+5121 “ (HI(ZI,BIZ_HI(ZL Bl))
+| Z1+SiZ [T1: (21, By) + (ZI+SIZI> T

For the first two terms in (114) we get
|| ZI+SIZI ” <H1(21,31> _H1<Zl, /§1)>
SPARYAR S SEN:A on B
S PARVALIERS P SEN:A
=:a:(t),

(114)

(115)

(116)
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Where 7: R — R, is given by

ﬁ<a>:{0, a<0

117
a, a>0 (117)

We see that @1 () =0 for all & [t, ) Also uti-
lizing (116) and (21), we obtain for each t& [ #,0).

/O'tal(r) dr:/o'tgﬂ(ﬂu—ﬁu) T (1) dr

(118)
:77(l‘0>_77(l‘),
where
ﬂ(t)::g% T17T2(B1z'_31i<f>)~ (119)
Since 7(¢) >0, we see that
[(a@dr<q®Viclno) (120

Hence, j)‘ a:(t) dr is finite. For the last two terms

of (115) it can be shown

[ YARSIVA [ T1: (21, By) + (Z\+S\2) h
nel(t)

gT
ne(t)

ST

(121)

Therefore, by (116) and (121) the first two terms
in (128) are given by
| Z1+ S1Z: | TT1 (21, B + (Z1+S.2) Ty

galm%“"f

(122)

Similar to (122), the following can be seen to
satisfy

|| Z3+ SzZs ” II. (21, 22, Bz) + (Zs+ 5223) TPZ

<an() +50) 12
where
dz(f) ::izlﬂ(ﬁli_gli)%(zhzb gz) || Zs+SZZS " (124)

Also, we see that a»(#) >0 and A a2(7)dr is

finite. Therefore, we get

€z<f0)
4 (125)

Vit Va<an () +280) o)+

4
=: bi(¢) + bs,

Where
bi(t)=a(t) =a(t),
_ %€1<t0> €2<f0> (126>
bz—T‘i‘T.

From the bound of V4i(+) and V:(+), we obtain

nlzlP<Vi(z) +Va(2) <7:021P, (127)

where #=min (7", 1?), P2=max (", $?) In

view of (108), we have the following result

[ 5@ dr< V() = Vi () < Valty) (128)

t
for all tE[t,o0) Hence, f 7s(|z()|) dr is finite.

0

Here, we see that '/Om b1 (7) dris finite, and b, (¢) >0,

Y tE [ £,00) . The results of (127), (128), and fini-
oo t

teness of /(; vs(||2(2)|) dr and /0 b1 (7) dr satisfy

Lemma 3 (Corless and Leitmann, 1984). Hence
lim | z(#)]|=0, Thus, ltimz(t) =0, and we see

that this fact satisfies Property 5.

References

Abdollahi, F., Talebi, H. A. and Patel, R. V.,
2003, “State Estimation for Flexible-Joint Mani-
pulators Using Stable Neural Networks,” Pro-
ceeding of IEEE International Symposium on
Computational Intelligence in Robotics and Au-
tomation, pp.25~29.

Amjadi, F.R., Khadem, S. E. and Khaloozadeh,
H., 2001, “Position and Velocity Control of a
Flexible Joint Robot Manipulator via a Fuzzy
Controller Based on Singular Perturbation Analy-
sis,” The 10th IEEE International Conference on
Fuzzy Systems, pp. 348~351.

Chen, Y.H. and Leitmann, G., 1987, “Ro-
bustness of Uncertain System in the Absence of
Matching Assumption,” International Journal of
Control, Vol. 45, pp. 1527~ 1542.

Corless, M. J. and Leitmann, G., 1984, “Adap-
tive Control for Uncertain Dynamical Systems,”
in ; Blaquiere, A., and Leitmann, G., (eds.), Math-
ematical Theory of Dynamical Systems and Micro-
physics : Control Theory and Mechanics, Aca-
demic Press, New York.

Ficola, A., Marino, R. and Nicosia, S., 1983,
“A Singular Perturbation Approach to the Con-



Adaptive Robust Control Design and Experimental Demonstration for Flexible Joint Manipulators 73

trol of Elastic Joints,” Proceedings 21st Annual
Allerton Conference on Communication, Control,
and Computing, 1L, pp. 220~225.

Filipescu, A., Dgard, L. and Dion, M., 2003,
“Adaptive Gain Sliding Observer Based Sliding
controller for Uncertain Parameters Nonlinear
System. Application to Flexible Joint Robots,”
Proceeding of the 42nd IEEE Conference on De-
cision and Control, pp. 3537~3542.

Ge, S. S., 1996, “Adaptive Control of a Flexible
Joint Manipulator,” Automatica, Vol. 32, No. 2,
pp- 273~278.

Huang, A. C. and Chen, Y. C., 2004, “Adaptive
Sliding Control for Single-Link Flexible-Joint
Robot With Mismatched Uncertainties,” IEEE
Transactions on Control Systems Technology, Vol.
12, No. 5, pp. 770~775.

Khorasani, K., 1990, “Nonlinear Feedback con-
trol of Flexible Joint Manipulators: A Single

Link Case Study,” IEEE Transactions Automatic
Control, Vol. 35, No. 10, pp. 1145~1149.

Kim, D.H. and Oho, W.H., 2006, “Robust
Control Design For Flexible Joint Manipulators :
Theory and Experimental Verification,” Interna-
tional Journal of Control, Automation, and Sys-
tem Engineering, Vol. 4, No. 4, pp. 495~ 505.

Spong, M. W., 1989, “Adaptive Control of
Flexible Joints Manipulators,” System and Con-
trol Letters, Vol. 13, pp. 15~21.

Yim, W., 2001, “Adaptive Control of a Flex-
ible-Joint Manipulator,” Proceeding of IEEE In-
ternational Conference Robotics Automation, Seoul,
Korea, May, pp. 3441~ 3446.

Zhi, W. and Khorrami, F., 2000, “Robust Tra-
jectory Tracking for Manipulators with Joint
Flexibility via Backstepping,” Proceeding of the
American Control Conference, Chicago, Illinois,
pp- 2849~2853.



